Stochastic Double Deep Q-Network
نویسندگان
چکیده
منابع مشابه
Variational Deep Q Network
We propose a framework that directly tackles the probability distribution of the value function parameters in Deep Q Network (DQN), with powerful variational inference subroutines to approximate the posterior of the parameters. We will establish the equivalence between our proposed surrogate objective and variational inference loss. Our new algorithm achieves efficient exploration and performs ...
متن کاملDeep Attention Recurrent Q-Network
A deep learning approach to reinforcement learning led to a general learner able to train on visual input to play a variety of arcade games at the human and superhuman levels. Its creators at the Google DeepMind’s team called the approach: Deep Q-Network (DQN). We present an extension of DQN by “soft” and “hard” attention mechanisms. Tests of the proposed Deep Attention Recurrent Q-Network (DAR...
متن کاملImplementing the Deep Q-Network
The Deep Q-Network proposed by Mnih et al. [2015] has become a benchmark and building point for much deep reinforcement learning research. However, replicating results for complex systems is often challenging since original scientific publications are not always able to describe in detail every important parameter setting and software engineering solution. In this paper, we present results from...
متن کاملDeep Reinforcement Learning with Double Q-Learning
The popular Q-learning algorithm is known to overestimate action values under certain conditions. It was not previously known whether, in practice, such overestimations are common, whether this harms performance, and whether they can generally be prevented. In this paper, we answer all these questions affirmatively. In particular, we first show that the recent DQN algorithm, which combines Q-le...
متن کاملDynamic Frame skip Deep Q Network
Deep Reinforcement Learning methods have achieved state of the art performance in learning control policies for the games in the Atari 2600 domain. One of the important parameters in the Arcade Learning Environment (ALE, [Bellemare et al., 2013]) is the frame skip rate. It decides the granularity at which agents can control game play. A frame skip value of k allows the agent to repeat a selecte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2019
ISSN: 2169-3536
DOI: 10.1109/access.2019.2922706